首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   984篇
  免费   125篇
  国内免费   36篇
化学   101篇
晶体学   2篇
力学   443篇
综合类   21篇
数学   276篇
物理学   302篇
  2024年   1篇
  2023年   10篇
  2022年   19篇
  2021年   22篇
  2020年   21篇
  2019年   22篇
  2018年   23篇
  2017年   43篇
  2016年   36篇
  2015年   26篇
  2014年   48篇
  2013年   84篇
  2012年   56篇
  2011年   79篇
  2010年   39篇
  2009年   62篇
  2008年   47篇
  2007年   56篇
  2006年   63篇
  2005年   50篇
  2004年   56篇
  2003年   52篇
  2002年   47篇
  2001年   29篇
  2000年   20篇
  1999年   22篇
  1998年   18篇
  1997年   12篇
  1996年   11篇
  1995年   11篇
  1994年   12篇
  1993年   10篇
  1992年   6篇
  1991年   13篇
  1990年   4篇
  1989年   3篇
  1988年   3篇
  1987年   1篇
  1986年   3篇
  1985年   2篇
  1984年   1篇
  1982年   1篇
  1975年   1篇
排序方式: 共有1145条查询结果,搜索用时 46 毫秒
61.
Unstructured meshes allow easily representing complex geometries and to refine in regions of interest without adding control volumes in unnecessary regions. However, numerical schemes used on unstructured grids have to be properly defined in order to minimise numerical errors. An assessment of a low Mach algorithm for laminar and turbulent flows on unstructured meshes using collocated and staggered formulations is presented. For staggered formulations using cell‐centred velocity reconstructions, the standard first‐order method is shown to be inaccurate in low Mach flows on unstructured grids. A recently proposed least squares procedure for incompressible flows is extended to the low Mach regime and shown to significantly improve the behaviour of the algorithm. Regarding collocated discretisations, the odd–even pressure decoupling is handled through a kinetic energy conserving flux interpolation scheme. This approach is shown to efficiently handle variable‐density flows. Besides, different face interpolations schemes for unstructured meshes are analysed. A kinetic energy‐preserving scheme is applied to the momentum equations, namely, the symmetry‐preserving scheme. Furthermore, a new approach to define the far‐neighbouring nodes of the quadratic upstream interpolation for convective kinematics scheme is presented and analysed. The method is suitable for both structured and unstructured grids, either uniform or not. The proposed algorithm and the spatial schemes are assessed against a function reconstruction, a differentially heated cavity and a turbulent self‐igniting diffusion flame. It is shown that the proposed algorithm accurately represents unsteady variable‐density flows. Furthermore, the quadratic upstream interpolation for convective kinematics scheme shows close to second‐order behaviour on unstructured meshes, and the symmetry‐preserving is reliably used in all computations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
62.
63.
The effect of wavelength and relative velocity on the disturbed interface of two‐phase stratified regime is modeled and discussed. To analyze the stability, a small perturbation is imposed on the interface. Growth or decline of the disturbed wave, relative velocity, and surface tension with respect to time will be discussed numerically. Newly developed scheme applied to a two‐dimensional flow field and the governing Navier–Stokes equations in laminar regime are solved. Finite volume method together with non‐staggered curvilinear grid is a very effective approach to capture interface shape with time. Because of the interface shape, for any time advancement, a new grid is performed separately on each stratified field, liquid, and gas regime. The results are compared with the analytical characteristics method and one‐dimensional modeling. This comparison shows that solving the momentum equation including viscosity term leads to physically more realistic results. In addition, the newly developed method is capable of predicting two‐phase stratified flow behavior more precisely than one‐dimensional modeling. It was perceived that the surface tension has an inevitable role in dissipation of interface instability and convergence of the two‐phase flow model. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
64.
The direct injection of CO2 into the deep ocean is one of the feasible ways for the mitigation of the global warming, although there is a concern about its environmental impact near the injection point. To minimize its biological impact, it is necessary to make CO2 disperse as quickly as possible, and it is said that injection with a pipe towed by a moving ship is effective for this purpose. Because the injection ship moves over a spatial scale of O(102km), a mesoscale model is necessary to analyse the dispersion of CO2. At the same time, since it is important to investigate high CO2 concentration near the injection point, a small‐scale model is also required. Therefore, in this study, a numerical model was developed to analyse CO2 dispersion in the deep ocean by using a fixed mesoscale and a moving small‐scale grid systems, the latter of which is nested and moves in the former along the trajectory of the moving ship. To overcome the artificial diffusion of mass concentration at the interface of the two different grid systems and to keep its spatial accuracy almost the same as that in the small‐scale, a particle Laplacian method was adopted and newly modified for anisotropic diffusion in the ocean. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
65.
This paper deals with the direct identification of the in-plane elastic properties of orthotropic composite plates from heterogeneous strain fields. The shape of the tested specimen is that of a T subjected to a complex stress state. As a result, the entire set of unknown parameters is directly involved in the strain and displacement responses of the sample. No exact analytical solution is available for such a geometry, and a specific strategy is used to identify the different stiffness components from the whole-field displacements measured over the tested specimen with a suitable optical method. The paper focuses mainly on the experimental aspects of the procedure, and an example of mechanical characterization of a fabric-reinforced composite plate is given.  相似文献   
66.
The proposed all-optical 2-D switching networks are (i) M×N-gon prism switches (M2, N3) and (ii) 3-D grids of any geometry N3. For the routing we assume (1) the projection of the spatial architectures onto plane graphs (2) the embedding of the latter guest graphs into (in)complete host hypercubes (N=4) and generally, into N-cube networks (N3) and (3) routing by means of the cube algorithms of the host. By the embedding mainly faulty cubes (synonyms: injured cubes, incomplete cubes) arise which complicate the routing and analysis. The application of N-cube networks (i) extend the hypercube principles to any N3 (ii) increase the number of plane host graphs and (iii) reduce the incompleteness of the host cubes. Several different embeddings of the intersection graphs (IGs) of 2-D switching networks and several different routings are explained for N=4 and 6 by various examples. By the expansion of the grids (enlargement) internal waveguides (WGs) and internal switches are introduced which interact with the switches of the original 3-D grid without increasing the number of stages (NS). The embeddings by expansion apply to interconnection networks whereas dilation-2 embeddings (dilation ≡ distance of the nearest-neighbour nodes of the guest graph at the host) are rather suitable for the emulation of algorithms. Concepts for fault-tolerant routing and algorithm mapping are briefly explained.  相似文献   
67.
A Cartesian grid method using immersed boundary technique to simulate the impact of body in fluid has become an important research topic in computational fluid dynamics because of its simplification, automation of grid generation, and accuracy of results. In the frame of Cartesian grid, one often uses finite volume method with second order accuracy or finite difference method. In this paper, an h‐adaptive Runge–Kutta discontinuous Galerkin (RKDG) method on Cartesian grid with ghost cell immersed boundary method for arbitrarily complex geometries is developed. A ghost cell immersed boundary treatment with the modification of normal velocity is presented. The method is validated versus well documented test problems involving both steady and unsteady compressible flows through complex bodies over a wide range of Mach numbers. The numerical results show that the present boundary treatment to some extent reduces the error of entropy and demonstrate the efficiency, robustness, and versatility of the proposed approach. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
68.
A robust aspect ratio‐based agglomeration algorithm to generate high quality of coarse grids for unstructured and hybrid grids is proposed in this paper. The algorithm focuses on multigrid techniques for the numerical solution of Euler and Navier–Stokes equations, which conform to cell‐centered finite volume special discretization scheme, combines vertex‐based isotropic agglomeration and cell‐based directional agglomeration to yield large increases in convergence rates. Aspect ratio is used as fusing weight to capture the degree of cell convexity and give an indication of cell stretching. Agglomeration front queue is established to propagate inward from the boundaries, which stores isotropic vertex and also high‐stretched cell marked with different flag according to aspect ratio. We conduct the present method to solve Euler and Navier–Stokes equations on unstructured and hybrid grids and compare the results with single grid as well as MGridGen, which shows that the present method is efficient in reducing computational time for large‐scale system equations. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
69.
It is crucial to deal with the grid non‐orthogonality effectively in solving the flow in complex geometries, especially at high Reynolds numbers. In this study, the newly proposed Coupled and Linked Equations Algorithm Revised‐ER (CLEARER) algorithm is adopted to solve this problem successfully. In CLEARER algorithm the second relaxation factor is introduced in constructing the contravariant interface velocities, by setting it to a low value. CLEARER algorithm can overcome the severe grid non‐orthogonality and non‐linearity of equations effectively. After the numerical results with CLEARER are validated with the benchmark solutions, this algorithm is used to solve the lid‐driven flow in inclined cavity with inclination angles varying from 10 to 170°, and Reynolds numbers varying from 5000 to 15 000. The streamlines and the centerline velocity distributions are provided in detail for all cases, which may offer some guidance for the study in this area. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
70.
The use of a colocated variable arrangement for the numerical solution of fluid flow is becoming more and more popular due to its coding simplicity. The inherent decoupling of the pressure and velocity fields in this arrangement can be handled via a special interpolation procedure for the calculation of the cell face velocity named pressure‐weighted interpolation method (PWIM) (AIAA J. 1983; 21 (11):1525–1532). In this paper a discussion on the alternatives to extend PWIM to unsteady flows is presented along with a very simple criterion to ascertain if a given interpolation practice will produce steady results that are relaxation dependent or time step dependent. Following this criterion it will be shown that some prior schemes presented as time step independent are actually not, although by using special interpolations can be readily adapted to be. A systematic way of deriving different cell face velocity expressions will be presented and new formulae free of Δt dependence will be derived. Several computational exercises will accompany the theoretical discussion to support our claims. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号